
rolf.jufer@letsboot.ch

Spring Security

Welcome &
Introduction

Notes

u The slides and source code for the demos can be found at
https://github.com/rolfjufer/spring-security-jugstalk.

u It's worth noting that the demos are deliberately kept
simple. Our aim is to illustrate the elements discussed,
rather than crafting production-ready code.

https://github.com/rolfjufer/spring-security-jugstalk

Spring Security

u Spring Security has become a key project in the Spring
Ecosystem.

u It provides comprehensive support for authentication,
authorisation and protection against common security
vulnerabilities.

u Spring Security's integration spans multiple frameworks,
APIs, and servlet and reactive stacks.

Focus of
this talk

https://spring.io/projects/spring-security

Spring Security Releases and Support

Sources: https://spring.io/projects/spring-security#support
https://tanzu.vmware.com/spring-runtime

https://spring.io/projects/spring-security
https://tanzu.vmware.com/spring-runtime

Impact of VMware's sale to Broadcom

u The Spring Framework/Ecosystem is open source
and continues to be developed by the Spring
community.

u However, the sale of VMware to Broadcom poses
potential risks to the future of Spring, particularly
with respect to long-term support and strategic
direction of the framework.

u In particular, Broadcom may reduce its financial
and human resources support for the development
of Spring and Spring Security. Source: X (formerly Twitter)

22. Nov. 2023

Objective of this Talk

u Participants will get a pragmatic introduction to using
Spring Security Version 6.2 using a practical example to
integrate security features into RESTful services.

u The seamless integration with OAuth 2.0 and OpenID
Connect will also be briefly discussed.

Note: Spring Security Focus

u This talk specifically covers Spring Security and does not
address general security topics like the OWASP Top 10.

u We'll focus on using and configuring Spring Security in
Spring-based applications to protect against some
important security risks and mitigate them.

u For broader security principles, consider additional
resources.

https://owasp.org/www-project-top-ten/

About me

u I am a trainer at letsboot.ch, a lecturer at the Bern
University of Applied Sciences and a freelance IT
consultant and enthusiastic software developer.

u Over the past 35 years I have worked in many IT fields and
industries (eg. mid-sized IT service provider, Swisscom,
SRG SSR).

u My current areas of activity include process management
with BPMN and Camunda, enterprise application
integration with Apache Camel, backend development
with the Spring Ecosystem, Docker, Kubernetes, etc.

https://www.letsboot.ch/en-gb/team
http://www.bfh.ch/de/rolf-jufer
http://www.bfh.ch/de/rolf-jufer

Personal Note

u Please note that I am
wearing hearing aids.

u I may not always
understand you
immediately.

Photo by Andrea Piacquadio:
https://pexels.com

https://www.pexels.com/de-de/foto/mann-im-roten-poloshirt-das-nahe-tafel-sitzt-3779448/

Use Case

Use Case: Letsboot Website

u Letsboot offers a wide range of courses and uses a web-
based application that allows interested parties to browse
and register for the current courses offered (à Example).

u At the same time, only authorised administrators should
be able to manage the courses on offer.

https://www.letsboot.ch/en-gb
https://www.letsboot.ch/en-gb
https://www.letsboot.ch/en-gb/course-date/spring-security-2024-06-05

Use Case:
Course
Management
of letsboot.ch

Use Case: Course Management API

Let's dive in!

Request Flow in Spring MVC

Opt-in with Spring Security Starter

<dependencies>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>
<!-- ... -->
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-security</artifactId>

</dependency>
</dependencies>

Impact of this Dependency

u Requires authentication
for all endpoints

u Default user with
generated password at
startup

u Protects password
storage with Bcrypt etc.

u Supports form-based
login and logout

u Authenticates form-based
login and HTTP-Basic

u Mitigates CSRF and
Session Fixation attacks

u …

https://docs.spring.io/spring-security/reference/servlet/getting-started.htm

https://docs.spring.io/spring-security/reference/servlet/getting-started.html

Demo 1
http://localhost:8080/api/v1/courses

Using generated security password: 9cff30f3-8795-4eea-8d39-47389e9e3319

This generated password is for development use only.

http://localhost:8080/api/v1/courses

Behind the Scenes: SecurityFilterChain

https://docs.spring.io/spring-security/reference/servlet/architecture.html

logging.level.org.springframework.security.web.FilterChainProxy=TRACE

https://docs.spring.io/spring-security/reference/servlet/architecture.html

Cross-Site-Request-Forgery (CSRF)
Protection

u Adding the spring-boot-starter-security
dependency also enables CSRF protection by default.

https://owasp.org/www-community/attacks/csrf

Spring
Security
Architecture

Spring Security Components (a small extract)

See also https://spring.io/guides/topicals/spring-security-architecture

https://spring.io/guides/topicals/spring-security-architecture

SecurityFilterChain Bean

u The SecurityFilterChain can hold an arbitrary number of security
filters.

u Typically you only need to specify your authentication and
authorization rules. Example :

@Configuration
public class AuthorizationConfig {

@Bean
public SecurityFilterChain configure(HttpSecurity http) throws Exception {

http.formLogin(Customizer.withDefaults()); // log in with username and pw
http.authorizeHttpRequests((authorize) -> authorize

.requestMatchers(HttpMethod.GET, "/api/v1/courses/**").permitAll()

.requestMatchers(HttpMethod.POST, "/api/v1/courses/**").hasRole("ADMIN")

.anyRequest().authenticated()
);
return http.build();

}
}

https://docs.spring.io/spring-security/reference/servlet/architecture.html

SecurityFilterChain Bean

u The SecurityFilterChain can hold an arbitrary number of security
filters.

u Typically you only need to specify your authentication and
authorization rules. Example :

@Configuration
public class AuthorizationConfig {

@Bean
public SecurityFilterChain configure(HttpSecurity http) throws Exception {

http.formLogin(Customizer.withDefaults()); // log in with username and pw
http.authorizeHttpRequests((authorize) -> authorize

.requestMatchers(HttpMethod.GET, "/api/v1/courses/**").permitAll()

.requestMatchers(HttpMethod.POST, "/api/v1/courses/**").hasRole("ADMIN")

.anyRequest().authenticated()
);
return http.build();

}
}

Configures the authorization of HTTP requests.

• Allows all GET requests to paths starting with "/api/v1/courses/" for
any user.

• However, POST requests to the same paths are only permitted for
users with the "ADMIN" role. All other requests require
authentication.

HttpSecurity: Security Rules for Endpoints

authorizeHttpRequests()
exceptionHandling()
csrf()
cors()
formLogin()
logout()

Note: Request- vs. Method-Level Autho-
rization

u The previous example models authorisation at the request
level.

u There is also the option of modelling authorisation at the
method level, with annotations such as:
u @PreAuthorize("hasAuthority('ADMIN')")

u Due to time constraints, we will not discuss this option
further.

Authentication Process

Authentication Mechanisms

@Configuration
public class UserManagementConfig {

@Bean
public UserDetailsService users(PasswordEncoder passwordEncoder) {

UserDetails admin = User.builder()
.username("admin").password(passwordEncoder.encode("password"))
.roles("ADMIN").build();

// InMemoryUserDetailsManager implements UserDetailsService to provide support
// for username/password based authentication that is stored in memory.
return new InMemoryUserDetailsManager(admin);

}
}

u Spring Security provides comprehensive support for
Authentication. Example:

Demo 2

Who provides UserManagement?

u The demo suffers from the fact that it must provide its
own user management.

u This has significant drawbacks such as
u lack of single sign-on (SSO)

u fragmented user data

u security risks

u lack of standardisation

u and scalability issues

OAuth 2.0
and OpenID
Connect

Motivation

u Balancing security and user convenience is key in
authentication. Managing multiple credentials for various
apps can be cumbersome and disrupt user experience.

u OAuth 2.0 and OpenID Connect offer a robust framework
for authentication and authorization, promoting both
security and user convenience across diverse applications.

Spring Security with OAuth 2.0 and
OpenID Connect

u Integrating Spring Security with OAuth 2.0 and OpenID
Connect (OIDC) allows you to secure your Spring-based
applications by leveraging industry-standard protocols
for authentication and authorization.

u In a nutshell:
u OAuth 2.0 is the foundation for controlled access to resources.

u OpenID Connect builds upon OAuth 2.0 to add user authentication
and information sharing.

https://docs.spring.io/spring-security/reference/servlet/oauth2/index.html

Spring Security OAuth2 Dependencies
(see Spring Initializr)

https://start.spring.io/

Example
OAuth2
Roles

OAuth2 Authorization Server

u Instead of Spring Security's
native Authorization Server,
we may use Keycloak (as it is
widely used in practice).

https://spring.io/projects/spring-authorization-server
https://www.keycloak.org/

Authorization Server – Ressource Server:
Token Exchange (Bird's eye view)

1. User executes use case.

2. Client requests token.

3. Authorization server issues token.

4. Client sends requests.

5. Resource server authorizes and
executes.

6. Client displays result.

Getting a Token from Authorization
Server with OAuth2

u An OAuth2 grant type is the method by which a client
obtains a token. There is a whole range of approaches to
how clients obtain their token from the authentication
server.

u The most common grant types are
u authorization code grant type (--> access token, see next slide)

u authorization code grant type with PKCE (“pixy”, proof key for
code exchange)

u client credentials grant type

Also see: https://oauth.net/2/grant-types/

https://oauth.net/2/pkce/

Example
Authorization
Code Grant Type

Access Tokens
Access Tokens (OAuth 2.0)

Purpose
Access tokens are used for authorization purposes
in OAuth 2.0.

Contents

Access tokens carry information about the per-
missions granted to the client application, such as
the scope of access and possibly additional user
attributes.

Usage

Access tokens are presented by the client appli-
cation to the resource server to gain access to
protected resources.

OAuth2 Ressource Server Dependency

u By adding spring-boot-starter-oauth2-resource-
server to a Spring Boot application, it can act as a
protected API and validate access tokens from clients.

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-oauth2-resource-
server</artifactId>

</dependency>

Example Response from Authorization
Server

{

"access_token": "eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiS…",

"expires_in": 300,

"refresh_expires_in": 1800,

"refresh_token": "eyJhbGciOiJIUzI1NiIsInR5cCIgOi…",

"token_type": "Bearer", *

…

}

encoded JWT (see next slide) **

* The name "Bearer" comes from the fact that here we simply "presents" or "carries" the token.
** OAuth 2.0 Spec itself does not mandate the format of the access token, but it is often JWT.

Revised SecurityFilterChain Bean
@Configuration
public class AuthorizationConfig {

@Bean
public SecurityFilterChain configure(HttpSecurity http) throws Exception {

// http.formLogin(Customizer.withDefaults());
// Configures OAuth 2.0 resource server support for the application.
// This enables the application to act as a resource server, capable of
// accepting and responding to protected resource requests using access tokens.
http.oauth2ResourceServer(oauth2 -> oauth2.jwt(jwt ->

jwt.jwtAuthenticationConverter(jwtConverter)));
// Converter is responsible for extracting relevant information from the JWT
// token (like roles, expiry date etc.)
// ...
);
return http.build();

}

}

See also https://docs.spring.io/spring-security/reference/servlet/oauth2/index.html

https://docs.spring.io/spring-security/reference/servlet/oauth2/index.html

Demo 3

OAuth2 Client Dependency

u By adding the spring-boot-starter-oauth2-client
dependency to a Spring Boot application, it can seamlessly
act as an OAuth 2.0 client. This simplifies the process of
integrating with OAuth authorization servers and accessing
protected resources from resource servers

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-oauth2-
client</artifactId>

</dependency>

SecurityWebFilterChain Bean
(as applied in Spring Cloud API Gateway)

u SecurityWebFilterChain is specifically designed for reactive
applications using Spring WebFlux.

u Note: Spring Cloud Api Gateway is reactive.
@Configuration
@EnableWebFluxSecurity // Enables Spring Security for reactive applications
public class SecurityConfig {

@Bean
public SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {

http.authorizeExchange(auth -> auth.anyExchange().authenticated())
.oauth2Login(withDefaults())
.oauth2ResourceServer((oauth2) -> oauth2.jwt(Customizer.withDefaults()));

return http.build();
}

}

Demos and more Details about Oauth2
Client

u Due to time constraints, I am not able to do another demo
on this topic.

u However, there are many demos and additional
explanations on youtube or on various tech blogs (e.g.
Piotr's TechBlog, Dan Vegas Blog, Baeldungs Blog...).

u I would also like to point out that I offer a 2-day course on
Spring Security. More information on the website of
letsboot.ch. I offer free CHF 300 vouchers.

https://www.letsboot.ch/en-gb/course-date/spring-security-2024-06-05

Comparison of
Alternatives to
Spring Security
(randomly chosen)

Feature Spring Security Apache Shiro JAAS* Apache Fortress PicketLink
Authentication Yes Yes Yes Yes Yes
Authorization Yes Yes Yes Yes Yes

Session
Management Yes Yes Yes Yes Yes
Encryption Yes Yes Yes Yes Yes

Integrability
Spring, JEE,
Servlet, etc.

Spring, JEE,
Servlet, etc. Java EE

Java EE, Spring,
etc.

Java EE, Spring,
etc.

Flexibility High High Medium to High High High

Community
Support

Active
Community

Active
Community JDK Support

Active
Community

Active
Community

Complexity Medium to High Medium to High High High High

Identity
Management

Partial (depends
on integrations)

Partial (depends
on integrations) No Yes Yes

SSO (Single Sign-
On) Yes

Partial (depends
on integrations)

Partial (depends
on configuration) Yes Yes

Social Login Yes
Partial (depends
on integrations) No Yes Yes

JAAS = Java Authentication and Authorization Service

https://shiro.apache.org/
https://en.wikipedia.org/wiki/Java_Authentication_and_Authorization_Service
https://directory.apache.org/fortress/
https://docs.jboss.org/picketlink/2/latest/reference/html-single/

Conclusion

Spring Security at a Glance

u Spring Security is the cornerstone security solution for
Java applications, seamlessly integrated into the Spring
ecosystem.

u Its flexibility, combined with effortless integration and
continuous evolution, enables developers to secure their
applications with confidence.

u From authentication to authorisation, Spring Security is
the essential choice for secure Java development within
the Spring framework.

Additional Sources

u Spring Security Website: https://docs.spring.io/spring-
security/reference/index.html

u Spring Security in Action, Second Edition, Manning, 2024,
ISBN 978-1633437975

u Authentifizierung und Autorisierung in der IT,
Grundlagen und Konzepte, Hanser 2024, ISBN 978-3-446-
47949-4

u Marcobehler-guide:
https://github.com/marcobehler/marcobehler-
guides/blob/main/spring-security.adoc

https://docs.spring.io/spring-security/reference/index.html
https://github.com/marcobehler/marcobehler-guides/blob/main/spring-security.adoc
https://github.com/marcobehler/marcobehler-guides/blob/main/spring-security.adoc

Thank you!

